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The modified mapping method is developed to obtain new exact solutions to the com-
bined KdV and mKdV equation. The method is applicable to a large variety of nonlinear
evolution equations, as long as odd- and even-order derivative terms do not coexist in
the equation under consideration.
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1. INTRODUCTION

There are many methods for obtaining exact solutions of a nonlinear evolu-
tion equation, such as the inverse scattering transformation, the bilinear method,
symmetry reductions, B¨acklund, and Darboux transformations. Recently, directly
searching for exact solutions of the nonlinear evolution equations has become
more and more attractive for their important role in understanding the nonlinear
phenomena. Some of the important methods are tanh-function method (Malfliet,
1992; Parkeset al., 1997), sech-function method (Duffy and Parkes, 1996) and
Jacobi elliptic function method (Fuet al., 2001; Liu et al. 2001; Parkeset al.,
2002). In an earlier paper (Peng, to appear), the mapping method is proposed for
obtaining exact solutions to nonlinear evolution equations. An advantage of this
method is that we can obtain the solitary wave solution, the periodic wave solution
and the kink (or shock) wave solution, if exist, to the equation under consideration
in a unified way. The basic idea of this approach is as follows. For a given nonlinear
evolution equation, say, in two variables

N(u, ut , ux, uxx, · · ·) = 0, (1.1)

we seek a travelling wave solution of the form

u(x, t) ≡ u(ξ ), ξ = (x − ct). (1.2)
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Without loss of generality, we can definek > 0. Substituting Eq. (1.2) into Eq. (1.1)
yields an ordinary differential equation ofu(ξ ). Thenu(ξ ) is expanded into a
polynomial in f (ξ )

u(ξ ) =
n∑

i=0

Ai f i , (1.3)

where Ai are constants to be determined,n fixed by balancing the linear term
of highest order with nonlinear term in Eq. (1.1), andf satisfies the following
equation (the first kind of elliptic equation)

f ′′ = p f + q f 3, f ′2 = p f 2+ 1

2
q f 4+ r, (1.4)

where p, q, andr are constants to be determined. After Eq. (1.3) is substituted
into the ordinary differential equation, the coefficientsAi , k, c, p, q, andr may
be determined. If any of the parameters is left unspecified, it is regarded as being
arbitrary for the solution to Eq. (1.1). Thus Eq. (1.3) establishes an algebraic
mapping relation between the solution to Eq. (1.4) and that of Eq. (1.1). Because
of the entrance of three parametersp, q, andr , Eq. (1.4) has rich structures of
solutions. Asp = −2,q = 2 andr = 1, for example, the solution of Eq. (1.4) reads
f (ξ ) = tanhξ , and the method is called tanh-function method. Whenp = 1, q =
−2, andr = 0, Eq. (1.4) has solutionf (ξ ) = sec hξ , and the method is named sech-
function method. Above all, Eq. (1.4) has many Jacobi elliptic function solutions for
different values ofp,q, andr . So it may be said that the mapping method is a unified
approach, including tanh-, sech-, and Jacobi elliptic function methods as special
cases. In this paper, we further develop and modify this method to obtain new exact
solutions to the combined KdV and mKdV equation. In Eq. (1.3),u(ξ ) is expanded
into a polynomial inf with positive powers. Now we assumeu(ξ ) may be expanded
into a polynomial inf with both positive and negative powers, i.e., we take

u(ξ ) =
n∑

i=0

Ai f i +
n∑

i=1

Bi f −i , (1.5)

wheren is the same as in Eq. (1.3), andf satisfies Eq. (1.4). WhenBi = 0, Eq. (1.5)
degenerates as Eq. (1.3). The other procedure is the same as the above.

2. MAIN RESULTS

The combined KdV and mKdV equation

ut + γuux + αu2ux + βuxxx = 0, (2.1)

represents a model for wave propagation in a one-dimensional nonlinear lattice,
with anharmonic forces binding the particles (Wadati, 1975a,b). Various forms of
this equation have been used in plasma physics, solid-state physics and quantum
field theory (Dey, 1986; Konno and Ichikawa, 1974; Narayanamurti and Varma,
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1970; Tappert and Varma, 1970). Many authors have obtained some exact solutions
to Eq. (2.1) (Coffey, 1990; Mohamad, 1992; Yu, 2000). But our interest is confined
to the determination ofnewexact solutions of it. Substituting Eq. (1.2) into Eq. (2.1)
and integrating once, we find

−cu+ 1

2
γu2+ 1

3
αu3+ βk2u′′ = C, (2.2)

whereC is an integral constant. The substitution of Eq. (1.5) withn = 1 into
Eq. (2.2) and use of Eq. (1.4) yields (equating the coefficients of like powers off )

f 3 : 1
3αA3

1+ qβk2A1 = 0, (2.3)

f 2 : αA0A2
1+ 1

2γ A2
1 = 0, (2.4)

f 1 : −cA1+ α
(
A2

0A1+ A2
1B1

)+ pβk2A1+ γ A0A1 = 0, (2.5)

f 0 : −cA0+ 1
3α
(
A3

0+ 6A0A1B1
)+ 1

2γ (A2
0+ 2A1B1) = C, (2.6)

f −1 : −cB1+ α
(
A2

0B1+ A1B2
1

)+ pβk2B1+ γ A0B1 = 0, (2.7)

f −2 : αA0B2
1 + 1

2γ B2
1 = 0, (2.8)

f −3 : 1
3αB3

1 + 2rβk2B1 = 0, (2.9)

from which it is found that

A0 = − γ
2α

, A1 = ±
√
−3qβ

α
k, B1 = ±

√
−6rβ

α
k, (2.10)

c = − γ
2

4α2
± 3βk

√
2qr + pβk2. (2.11)

In Eq.(2.11),c takes positive sign whenA1 andB1 assume the same sign, otherwise,
c negative sign. Thus we obtain exact solution to Eq. (2.1)

u(x, t) = − γ
2α
±
√
−3qβ

α
k f ±

√
−6rβ

α
k f−1, (2.12)

where f satisfies Eq. (1.4) andξ = k(x − ct) with c given by Eq. (2.11). As
example, we only discuss specific expressions ofu(x, t) when positive sign is
taken in Eqs. (2.10) and (2.11) for simplicity.

Case 2.1. p = −2, q = 2, r = 1.

In this case, Eq. (1.4) has solutionf (ξ ) = tanhξ . So we obtain exact solution to
Eq. (2.1)

u(x, t) = − γ
2α
+
√
−6β

α
k(tanhξ + cos hξcschξ ), (2.13)
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whereξ = k(x − ct) with c = − γ 2

4α2 + 6βk− 2βk2, and which demandsα > 0,
β < 0 orα < 0,β > 0.

Case 2.2. p = −(1+m2), q = 2m2, r = 1.

The solution of Eq.(1.4) isf (ξ ) = snξ or f (ξ ) = cdξ ≡ cnξ/dnξ . Thus we get

u(x, t) = − γ
2α
+
√
−6β

α
k(msnξ + sn−1ξ ), (2.14)

and

u(x, t) = − γ
2α
+
√
−6β

α
k(mcdξ + cd−1ξ ), (2.15)

whereξ = k(x − ct) with c = − γ 2

4α2 + 6βkm− (1+m2)βk2, and which demand
α > 0, β < 0, orα < 0, β > 0. Asm→ 1, snξ → tanhξ , and Eq.(2.14) degen-
erates as Eq.(2.13).

Case 2.3. p = 2−m2, q = −2, r = −m′2 ≡ −(1−m2).

The solution of Eq.(1.4) readsf (ξ ) = dnξ , and we obtain exact solution to Eq.
(2.1)

u(x, t) = − γ
2α
+
√

6β

α
k(dnξ +

√
1−m2 dn−1ξ ), (2.16)

whereξ = k(x − ct) with c = − γ 2

4α2 + 6βk
√

1−m2(2−m2)βk2, and which de-
mandsα > 0,β > 0, orα < 0,β < 0.

Case 2.4. p = 2−m2, q = 2, r = m
′2.

Eq.(1.4) has solutionf (ξ ) = csξ ≡ cnξ/snξ . The exact solution to Eq.(2.1)
reads

u(x, t) = − γ
2α
+
√
−6β

α
k(csξ +

√
1−m2cs−1ξ ), (2.17)

whereξ = k(x − ct) with c = − γ 2

4α2 + 6βk
√

1−m2+ (2−m2)βk2, and which
demandsα > 0, β < 0 or α < 0, β > 0. As m→ 0, csξ → cotξ , and from
Eq.(2.17) we obtain

u(x, t) = − γ
2α
+
√
−6β

α
k secξcscξ. (2.18)
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Case 2.5. p = −(1+m2), q = 2, r = m2.

The solution to Eq.(1.4) isf (ξ ) = nsξ ≡ 1/snξ or f (ξ ) = dcξ ≡ dnξ/cnξ . So
we have Eq.(2.14) and

u(x, t) = − γ
2α
+
√
−6β

α
k(dcξ +mdc−1ξ ), (2.19)

whereξ = k(x − ct) with c = − γ 2

4α2 + 6βkm− (1+m2)βk2, and which demands
α > 0,β < 0 orα < 0,β > 0. In equations above,snξ , cnξ , anddnξ are Jacobi
elliptic sine, cosine functions, and the third kind of Jacobi elliptic function, re-
spectively. Andm(0 < m < 1) is the modulus of the elliptic function. Detailed
explanations about Jacobi elliptic functions can be found in references (Bowman,
1959; Liu and Liu, 2000; Prasolov and Solovyev, 1997).

3. CONCLUSION

New exact solutions to the combined KdV and mKdV equation are obtained
by means of the modified mapping method. It can be seen that because of the
entrance of three parametersp, q, andr , we may obtain multiple exact solutions
to the equation in question in a unified way, and only minimal algebra is needed to
find these solutions. The method used in this paper is applicable to a large variety
of nonlinear evolution equations, as long as even- and odd-order derivative terms
do not coexist in the equation. It is interesting to extend further this approach to
deal with nonlinear evolution equation with variable coefficients.
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